

DynaWeld GmbH & Co. KG Süd: Herdweg 13, D-75045 Wössingen Nord: Hermann-Löns-Straße 3A, D-21382 Brietlingen Kamen: Herbert-Wehner-Straße 2, D-59174 Kamen E-Post: info@dynaweld.de Web: www.dynaweld.eu

Ganzheitliche Betrachtung der Verzugskompensation beim Zusammenbau geschweißter umgeformter Blechkomponenten aus hochfesten Stählen

Dr.-Ing. Tobias Loose Dipl.-Ing. Jens Rohbrecht

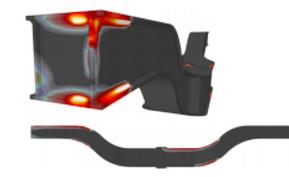
Technischer Arbeitskreis "Kaltumformung moderner Stahlwerkstoffe"

21.02.2019

Walter Neff GmbH, Karlsruhe



Our Business


- Process Optimization
- Distortion Compensation
- Quality Optimization
- Heat Tratment
- Welding
- Hotforming
- Distortion
- Residual Stress
- Metallurgy
- Crack And Strength
- Material Management

DynaWeld is more than 20 Years of experience in

simulation of all kinds of thermal related manufacturing and material processes

DynaWeld's Development

DynaWeld[®]

A Design of the second	Territoria da Calendaria d	Concession of	100.000	1.40
-	- Acres		11.074.044	-
An an	T	II.		s.
10.00	<	(hail hantes		7
13.haha	and a	Cash Ball	Text Towners Per-	14

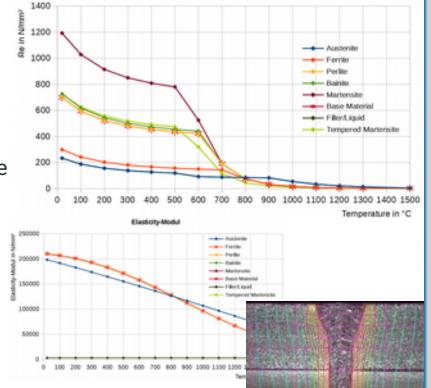
- Preprocessor
- Environment And Material Data Manager
- Welding, Heat Treatment, Forming
- High Sofisticated Simulations
- Simulation of Assembly

MatplusHQ

- Simulation Tool
- Pre- Postprocessor And Solver
- Heating And Quenching
- Very Easy Usage For Everyone

Development - Training - Support - Customer related software solutions

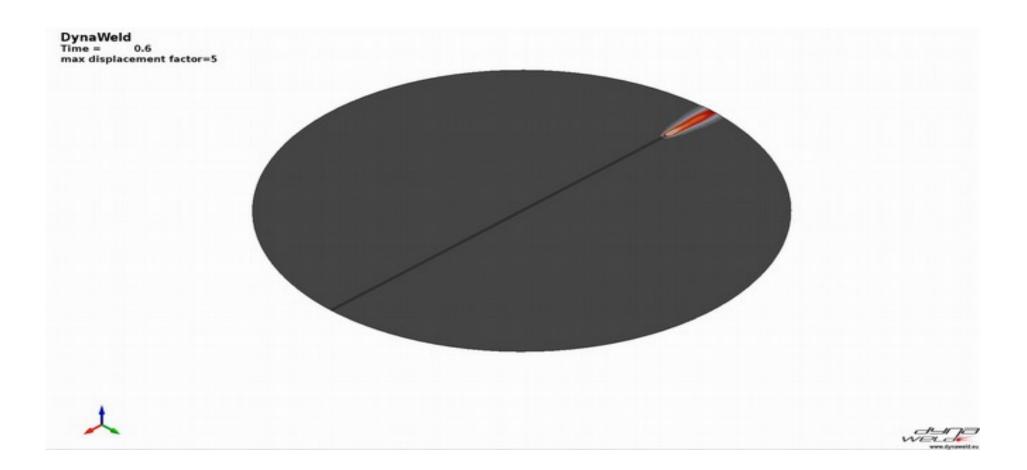
HCT980X Material Properties for Welding Analysis


Material properties and material model for welding analysis needs to take into acount thermal dependend behaviour,

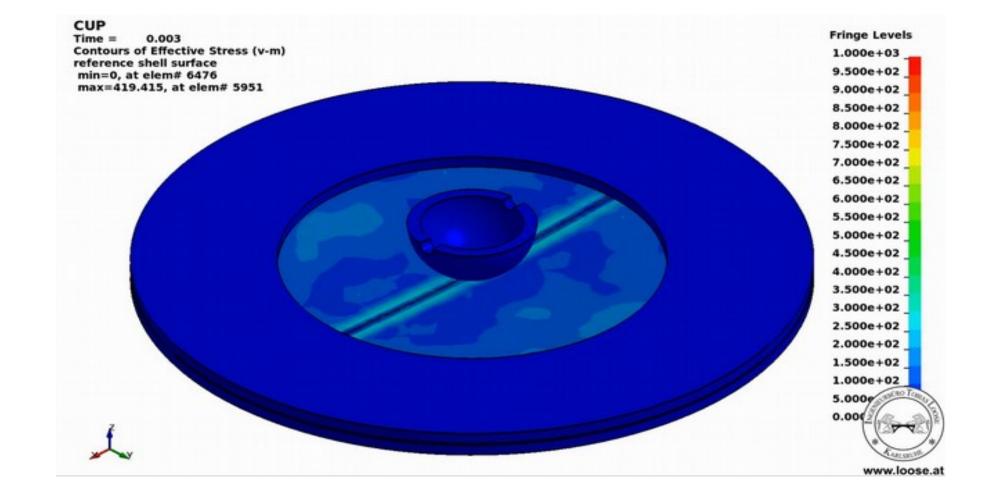
in certain cases the metalurgical behaviour too.

Apart from expensive measurements a material simulation can provide the necessary data too.

DynaWeld Material provides import of JMatPro data from material simulation.



	LITCOL	IOX.mat		
	nicse	NA.mat		
Import Parameter			Tempera	atur in Celsiu
Werkstoff Name:		HCT980X		
Werkstoff Charge:		DynaWeld		
Werkstoff ID (1 999):		1		
Solidus Temperatur (Akti	vierung Start):	1350		
.iquidus Temperatur (Akt	ivierung Ende):	1400		
Schmelzwaerme (kj/kg):		270		
Temperatur Schmelzwaer	me	1500		
listory Reset Starttempe	ratur (TASTART):	1350		
History Reset Endtemper	atur (TAEND):	1400		
Mindest E-Modul (MPa):		3000		
max E-Modul Schmelze		3001		
Plastische Dehnung bei Z	ugfestigkeit:	0.13		
Elektischen Widerstan	d aus 11-MATERIAL	sv importieren		
F Umwandlung anpasse	n (13-ZTU-Steel.csv)			
Phase 1 Phase 2 Ph	ase 3 Phase 4	enanteil Phase 5 Phase (0.0 0.0	6	
	ase 3 Phase 4	Phase 5 Phase	6	
Phase 1 Phase 2 Ph 1.0 0.0 0.0	ase 3 Phase 4	Phase 5 Phase	6	
Phase 1 Phase 2 Ph 1.0 0.0 0.0 Phasenzuordnung:	ase 3 Phase 4 0 0.0	Phase 5 Phase		Ergaenzen
Phase 1 Phase 2 Ph 1.0 0.0 0. Phasenzuordnung: Ziel	ase 3 Phase 4 0 0.0	Phase 5 Phase 0.0 0.0 0.0		Ergaenzen
Phase 1 Phase 2 Ph 1.0 0.0 0. Phasenzuordnung: Ziel	ase 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld	Phase 5 Phase 0.0 0.0 0.0	Zugfestigkeit	Ergaenzen
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit	ase 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld	Phase 5 Phase 0.0 0.0 0.0	Zugfestigkeit MPa	Ergaenzen
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld	ase 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F	Phase 5 Phase 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Zugfestigkeit MPa 596.6049	Ergaenzen
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Ferrit	ase 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F	Phase 5 Phase 0.0 0.0 Streckgrenze MPa 233.308 298.832	Zugfestigkeit MPa 596.6049 531.6818	Ergaenzen
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Perrit Perrit	ase 3 Phase 4 0 0.0 Quelle MatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F	Phase 5 Phase 0.0 0.0 Streckgrenze MPa 233.308 298.832 698.703	Zugfestigkeit MPa 596.6049 531.6818 1119.8826	Ergaenzen
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Perrit Perlit Bainit	Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F	Phase 5 Phase 1 0.0 0.0 Streckgrenze MPa 233.308 298.832 698.703 725.934	Zugfestigkeit MPa 596.6049 531.6818 1119.8826 1156.12919999	Ergaenzen
Phase 1 Phase 2 Ph Lo 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Perrit Perrit Bainit Martensit	Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F	Phase 5 Phase 6 0.0 0.0 Streckgrenze MPa 233.308 298.832 698.703 725.934 1192.47	Zugfestigkeit MPa 596.6049 531.6018 1119.8826 1156.12919999 1723.8764	
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Periit Periit Periit Bainit Martensit Grundwerkstoff	Asse 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase 5 Phase 6 0.0 0.0 Streckgrenze MPa 233.300 298.832 6 725.934 1192.47 698.703	Zugfestigkeit MPa 596.6049 531.6818 1119.8826 1156.12919999 1723.8764 1119.8826	P
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Ferrit Perlit Bainit Martensit Grundwerkstoff Zusatz/Schmelze	Asse 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase 5 Phase 0.0 0.0 Streckgrenze MPa 233.308 298.832 698.703 725.934 1992.47 698.703 233.308	Zugfestigkeit MPa 596.6049 531.6818 1119.8826 1156.12919999 1723.8764 1119.8826 596.6049	n n
Phase 1 Phase 2 Ph Lo 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Ferrit Perlit Bainit Martensit Grundwerkstoff Zusatz/Schmelze Angelassener Martensit	Asse 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase 5 Phase 0.0 0.0 Streckgrenze MPa 233.308 298.832 698.703 725.934 1192.47 698.703 233.308 725.934	Zugfestigkeit MPa 596.6049 531.6818 1119.8826 1156.12919999 1723.8764 1119.8826 596.6049 1156.12919999	n n
Phase 1 Phase 2 Ph 1.0 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Ferrit Perlit Bainit Martensit Grundwerkstoff Zusatz/Schmelze Angelassener Martensit Angelassener Bainit	Asse 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase 5 Phase 0.0 0.0 Streckgrenze MPa 233.308 298.832 698.703 725.934 1192.47 698.703 233.308 725.934	Zugfestigkeit MPa 596.6049 531.6818 1119.8826 1156.12919999 1723.8764 1119.8826 596.6049 1156.12919999	p p
Phase 1 Phase 2 Ph Lo 0.0 0.1 Phasenzuordnung: Ziel DynaWeld Austenit Ferrit Perlit Bainit Martensit Grundwerkstoff Zusatz/Schmelze Angelassener Martensit	Asse 3 Phase 4 0 0.0 Quelle JMatPro / Sysweld P-1 P-2 P-3 P-4 P-5 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase 5 Phase 0.0 0.0 Streckgrenze MPa 233.308 298.832 698.703 725.934 1192.47 1392.47 233.308 725.934 1.0	Zugfestigkeit MPa 596.6049 531.6818 1119.8826 1156.12919999 1723.8764 1119.8826 596.6049 1156.12919999 -2.0	p p



Distortion by Welding

Forming Simulation after Welding Simulation

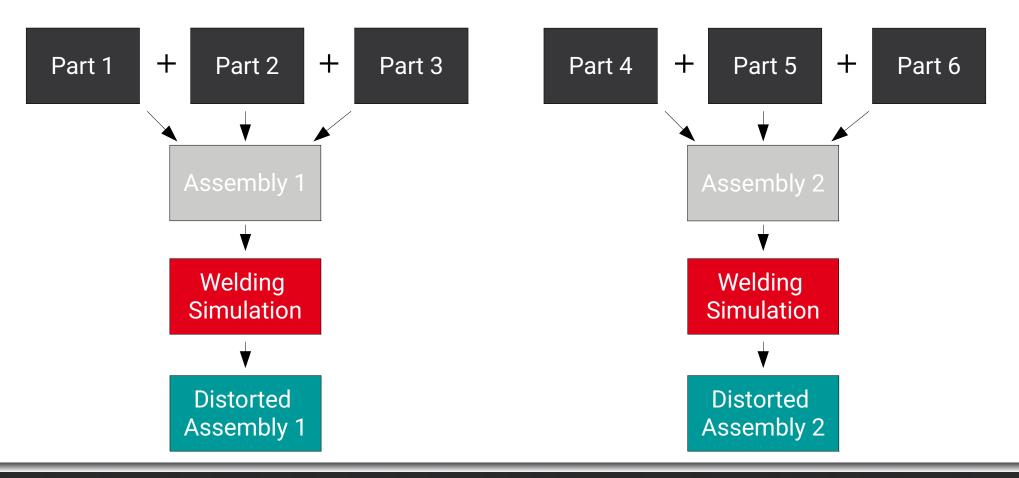
The old state of the art

- Forming simulation and optimization of forming process
- Welding simulation and optimization of welding process

The new state of the art

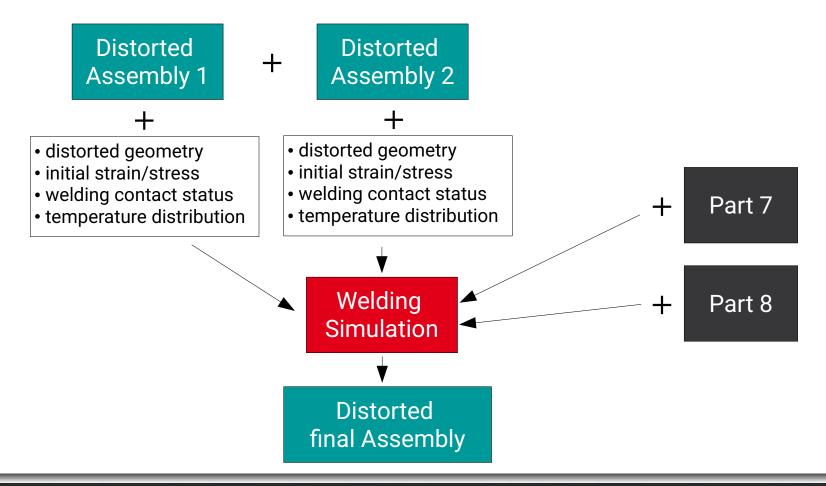
• Assembly simulation and optimization of the manufacturing process

Assembly Simulation:

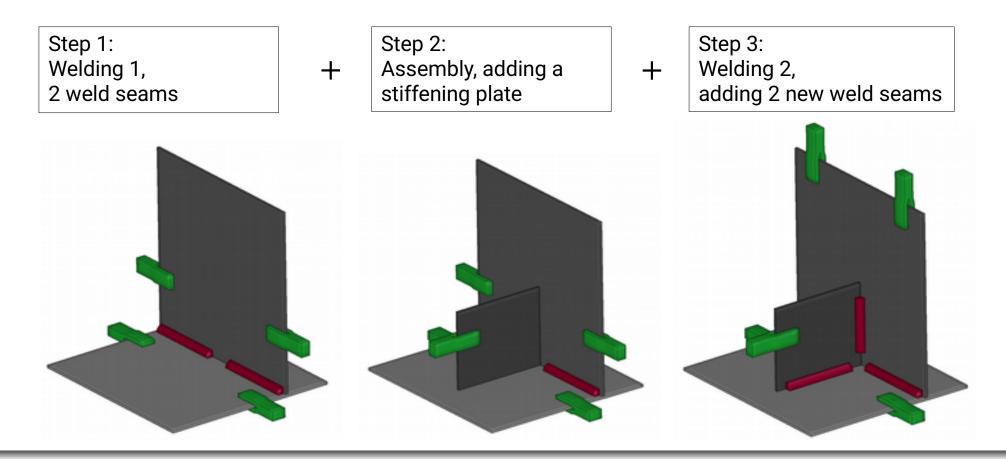

- take into account imperfect geometry of assembled parts
 - imperfect forming specimem geometry definition by simulation
 - imperfect forming specimem geometry definition by measurement
 - imperfect subassembly geometry definition by simulation
- take into account
 - deformation due to clamping of imperfect parts
 - deformation due to welding
- Enables the the integrated view of process
 - optimization at stages with highest compensation effort

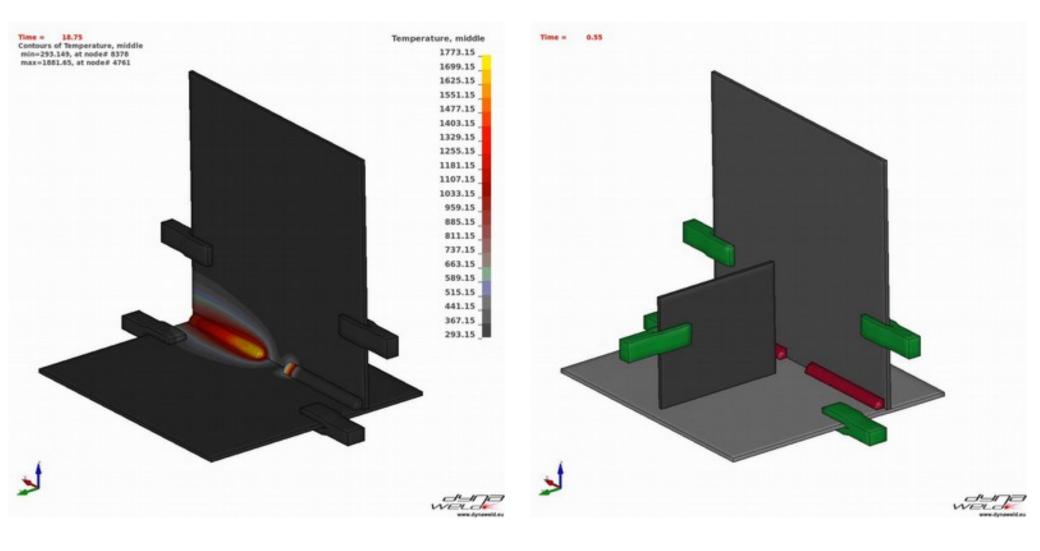
Simulation of Assembly

The assembly simulation takes into account prior stages

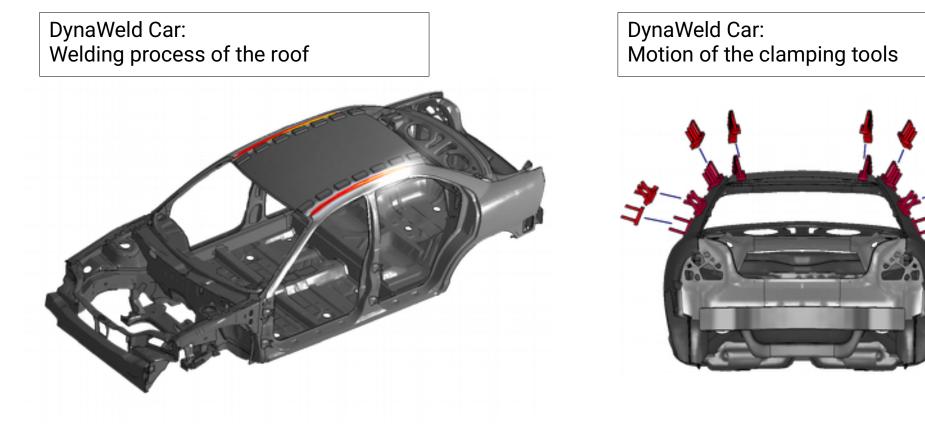

Assembly procedure

Simulation of Assembly

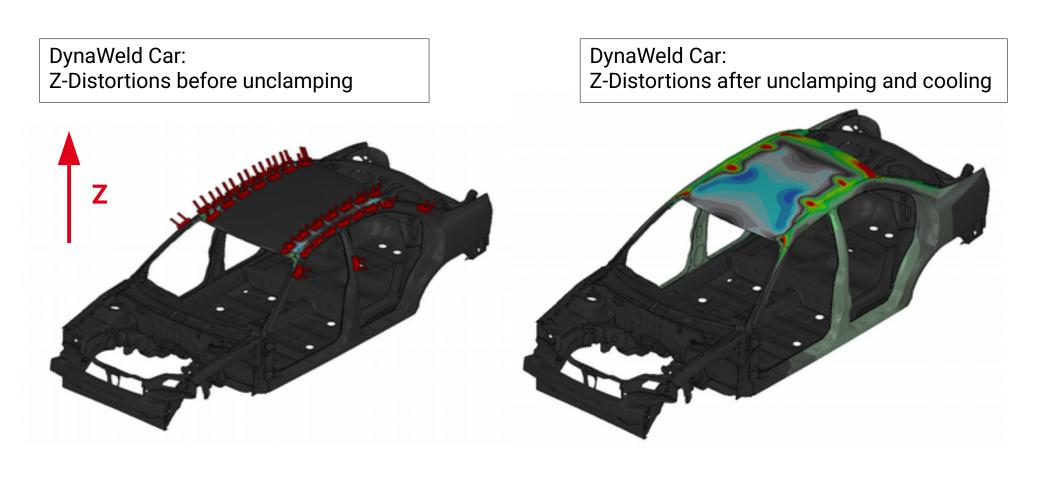

Assembly procedure


Simulation of Assembly

Assembly procedure



Example of Assembly Simulation


Assembly Example - Car Roof

www.dynaweld.eu

Assembly Example - Car Roof

Conclusion

Distortion Analysis Welding

- finding the reasons for certain distortion evolution
- virtual testing of variations

Best practice would be the application of simulation in earlier states for:

- approvement of the prearranged production
- intervention in early states of development, if tolerances are not reached or visible distortions problems appear

Assembly Analysis and integrated view of manufacturing

- Difference from target geometry by entire process
- Identification of the significant manufacturing steps for distortions and deviations for targeted intervention
- Design of compensation method
- Approval of compensation method or
- Approval of new designed manufacturing process

End

Thank you very much!

